

Working on the developing of a European standard for DD testing

T. Nuns, C. Inguimbert, ONERA- DESP C. Poivey, ESA ESTEC

retour sur innovation

Context 1/3

- Some guidelines already exist
 - Total dose (ESCC 22900, MIL-STD-883G, method 1019.9)
 - Single events (ESCC 25100)
 - Some documents exist for displacement damage
 - Proton testing in general ("Proton Test Guideline lessons learned" NASA NEPP document),
 - Displacement damage for imaging devices ("Displacement Damage Guideline," ESA document 0195162),
 - But no equivalence to other test activities
 - \Rightarrow Need of displacement damage guidelines

Context 2/3

- Why is there a lack of standardisation for displacement damages?
 - Do not concern all the device types
 - Mainly devices that interact or emit optical radiation (photonic or optoelectronic devices)
 - but also some other device types (bipolar transistors)
 - \Rightarrow limited list of device types
 - Wide range of materials (Silicon, GaAs, InGaAs, HgCdTe, InSb (Infrared detectors)
 - Wider domain of study
 - \Rightarrow More complex to interpret the result
 - Available literature not as large as for TID and SEE
 - Lesser technological interest
 - Difficulties in device testing (dedicated optical equipments, time consuming measurements)
 - High cost of devices

Context 3/3

- Goal of the study
 - Propose a DD test standard
 - Should be available by the end of the year after ESA and Components
 Technology Board (*CTB*)/Radiation Working group (*RWG*) comments
- Goal of this presentation
 - \Rightarrow Not a draft of the future guidelines, but:
 - Remind the physical processes responsible of the displacement damages
 - Remind the electrical effects
 - List the main parameters that should be taken into account

Outline

- Displacement damage (DD) causes and effects
 - Particle-matter interaction
 - Displacement damage main effects
 - Introduction to NIEL parameter
- Key parameters for a displacement damage guideline from pre- to post-irradiation
 - Measured parameters,
 - Irradiation and dosimetry
 - Bias and annealing
 - ...

Energy transfer from particle to matter

- Particle slowed down by transfering energy to the matter
- Main part of the deposited energy is ionisation (interaction with the electrons), the rest is atomic displacements (interaction with the nuclei)
 - Fraction depends on particle type and energy, target material
 - Fraction decreases when the energy increases
- Displacement damage: degradation in the bulk of the device

Particle matter interaction for DD

Atomic Displacements: example of proton irradiation

- 3 main interaction types, different energy transfers
 - Coulombian
 - Nuclear elastic
 - Nuclear inelastic
- Increasing transfered energy to the Primary Knock-on Atom and cascade size

- Consequence
 - Single displaced atom or interaction cascade
 - Creation of Frenkel pairs (vacancy-interstitial pairs) or more complex lattice defects (high concentration of deposited energy)
 - Reorganisation of these pairs into stable defects. Phase of "annealing"
 - Introduction of levels in the gap that modify the electrical properties of semiconductors

Degradation mechanisms

G. Hopkinson, RADECS short course, 2003

Exemples of sensitive devices

Solar cells

- Output power
- Short circuit current
- Open circuit voltage

Photodetectors

- Leakage current (dark current),
- Dark current non uniformity (DCNU) for arrays
- Charge Transfer Efficiency (CTE) (CCDs)
- Random Telegraph Signal (RTS)

Bipolar transistors

- Base current increase
- Gain decrease

Optocouplers

- Ratio between input and output current (CTR) due to transistor and LED degradation
- LED
 - Light output decrease

Laser Diodes

Thershold current increase

Non Ionizing Energy Loss (NIEL)

NIEL

- Rate at which energy is lost to displacement
- Analogous to LET or stopping power for ionizing irradiation
- Unit MeV.cm²/g
- Depends on the target material, the particle type and energy
- NIEL is a mean parameter

- The displacement damage dose (DDD)
 - For a monoenergetic irradiation: the product of the NIEL and the fluence
 - For a spectrum of energy

$$\text{DDD} = \int_{E_{\min}}^{E_{\max}} \left(\frac{\partial \Phi}{\partial E}\right) \text{NIEL(E)} dE$$

- The NIEL and the DDD are used for correlating the displacement damages
 - Various degradation models of electrical parameters with the DDD (linear, log...)
 - Evaluate the degradation for a mission (spectrum) supposes
 - An equivalence of the degradation from energy to energy using a damage factor
 - Correlation between the damage factor and the NIEL
 - \Rightarrow A good knowledge of the NIEL

NIEL scaling law observed deviations

Limit of the NIEL: DCNU (Dark Current Non Uniformity) in Image sensors

Points to clarify in order to perform a test 1/3

Before irradiation

- Particle type and energy
 - Protons versus neutrons, electrons
 - Relevance / equivalence for the mission
 - Range issues
 - One energy (which one), several energies, spectrum
- Fluence
 - Have relevant NIEL data for an equivalent DDD
 - margins
- · Parameters to measure
 - Sensitivity to displacement damages
 - Depends on the component type (e.g. imagers, optocouplers, LED, laser, photodiode...)
 - Conditions of measurement (temperature, levels...). Care should be taken when conditions change
- Number of samples
 - Part-to-part and Lot-to-lot variations
 - Samples preparation

Points to clarify in order to perform a test 2/3

- During irradiation
 - Bias conditions
 - Impact of bias on the degradation
 - Dosimetry requirements in term of accuracy
 - Energy (ex. straggling for degraded beams)
 - Flux and fluence
 - Beam uniformity
 - Irradiation temperature
 - Accuracy
 - Relevance of room temperature for low temperature application
 - Need of intermediate measurements?
 - Evaluate the response with the fluence and/or the DDD: concept of damage factor
 - Caution: damage factor could depend on measurement conditions and time after irradiation
 - Flux effect?

Points to clarify in order to perform a test 3/3

After irradiation

- Delay between irradiation and measurement
 - Annealing considerations
 - Activation of the devices
 - Availability of the test equipment on the irradiation site
- Storage conditions between irradiation and measurement
 - Prevent unexpected annealing effects
 - Bias conditions
 - Temperature

Conclusion

- Interests of DD guidelines
 - Help the people in charge of test
 - Definition
 - Conduction
 - Interpretation
 - Comparison
 - Hardness assurance tool
 - Should ensure a worst case of degradation
 - Trade-off between knowledges and technical constrains

